
Platform-independent static
binary code analysis using a meta-

assembly language
Thomas Dullien, Sebastian Porst

zynamics GmbH

CanSecWest 2009

Overview

2

The REIL Language

Abstract Interpretation

MonoREIL

Results

Motivation

• Bugs are getting harder to find

• Defensive side (most notably Microsoft) has
invested a lot of money in a „bugocide“

• Concerted effort: Lots of manual code auditing
aided by static analysis tools

• Phoenix RDK: Includes „lattice based“ analysis
framework to allow pluggable abstract
interpretation in the compiler

3

Motivation

• Offense needs automated tools if they want to
avoid being sidelined

• Offensive static analysis: Depth vs. Breadth

• Offense has no source code, no Phoenix RDK,
and should not depend on Microsoft

• We want a static analysis framework for
offensive purposes

4

Overview

5

The REIL Language

Abstract Interpretation

MonoREIL

Results

REIL

• Reverse Engineering Intermediate Language

• Platform-Independent meta-assembly language

• Specifically made for static code analysis of
binary files

• Can be recovered from arbitrary native
assembly code

– Supported so far: x86, PowerPC, ARM

6

Advantages of REIL

• Very small instruction set (17 instructions)

• Instructions are very simple

• Operands are very simple

• Free of side-effects

• Analysis algorithms can be written in a
platform-independent way

– Great for security researchers working on more
than one platform

7

Creation of REIL code

• Input: Disassembled Function

– x86, ARM, PowerPC, potentially others

• Each native assembly instruction is translated to
one or more REIL instructions

• Output: The original function in REIL code

8

Example

9

Design Criteria

• Simplicity

• Small number of instructions

– Simplifies abstract interpretation (more later)

• Explicit flag modeling

– Simplifies reasoning about control-flow

• Explicit load and store instructions

• No side-effects

10

REIL Instructions

• One Address

– Source Address * 0x100 + n

– Easy to map REIL instructions back to input code

• One Mnemonic

• Three Operands

– Always

• An arbitrary amount of meta-data

– Nearly unused at this point

11

REIL Operands

• All operands are typed

– Can be either registers, literals, or sub-addresses

– No complex expressions

• All operands have a size

– 1 byte, 2 bytes, 4 bytes, ...

12

The REIL Instruction Set

• Arithmetic Instructions

– ADD, SUB, MUL, DIV, MOD, BSH

• Bitwise Instructions

– AND, OR, XOR

• Data Transfer Instructions

– LDM, STM, STR

13

The REIL Instruction Set

• Conditional Instructions

– BISZ, JCC

• Other Instructions

– NOP, UNDEF, UNKN

• Instruction set is easily extensible

14

REIL Architecture

• Register Machine

– Unlimited number of registers t0, t1, ...

– No explicit stack

• Simulated Memory

– Infinite storage

– Automatically assumes endianness of the source
platform

15

Limitations of REIL

• Does not support certain instructions (FPU,
MMX, Ring-0, ...) yet

• Can not handle exceptions in a platform-
independent way

• Can not handle self-modifying code

• Does not correctly deal with memory selectors

16

Overview

17

The REIL Language

Abstract Interpretation

MonoREIL

Results

Abstract Interpretation

• Theoretical background for most code analysis

• Developed by Patrick and Rhadia Cousot around
1975-1977

• Formalizes „static abstract reasoning about
dynamic properties“

• Huh ?

• A lot of the literature is a bit dense for many
security practitioners

18

Abstract Interpretation

• We want to make statements about programs

• Example: Possible set of values for variable x at
a given program point p

• In essence: For each point p, we want to find

• Problem: is a bit unwieldly

• Problem: Many questions are undecidable
(where is the w*nker that yells „halting
problem“) ?

19

)(StatesPKp

)(StatesP

Dealing with unwieldy stuff

• Reason about something simpler:

• Example: Values vs. Intervals

20

)(StatesP

)(StatesP

D

D

Abstraction

Concretisation

Lattices

• In order for this to work, must be structurally
similar to

• supports intersection and union

• You can check for inclusion (contains, does not
contain)

• You have an empty set (bottom) and
„everything“ (top)

21

)(StatesP

)(StatesP

D

Lattices

• A lattice is something like a generalized
powerset

• Example lattices: Intervals, Signs, ,
mod p

22

)Registers(P

Dealing with halting

• Original program consists of p1 ... pn program
points

• Each instruction transforms a set of states into a
different set of states

• p1 ... pn are mappings

• Specify

• This yields us

23

)()(StatesPStatesP

DDpp n :''1

nn DDp :~

Dealing with halting

• We cheat: Let be finite is finite

• Make sure that is monotonous (like this talk)

• Begin with initial state I

• Calculate

• Calculate

• Eventually, you reach

• You are done – read off the results and see if
your question is answered

24

)(~ lp

))(~(~ lpp

)(~)(~ 1 lplp nn

p~
D

nD

Theory vs. practice

• A lot of the academic focus is on proving
correctness of the transforms

• As practitioner we know that pi is probably not
fully correctly specified

• We care much more about choosing and
constructing a so that we get the results we need

25

)(StatesP)(StatesP

D D

ip

'ip

D

Overview

26

The REIL Language

Abstract Interpretation

MonoREIL

Results

MonoREIL

• You want to do static analysis

• You do not want to write a full abstract
interpretation framework

• We provide one: MonoREIL

• A simple-to-use abstract interpretation
framework based on REIL

27

What does it do ?

• You give it

– The control flow graph of a function (2 LOC)

– A way to walk through the CFG (1 + n LOC)

– The lattice (15 + n LOC)

• Lattice Elements

• A way to combine lattice elements

– The initial state (12 + n LOC)

– Effects of REIL instructions on (50 + n LOC)

28

D

D

How does it work?

• Fixed-point iteration until final state is found

• Interpretation of result

– Map results back to original assembly code

• Implementation of MonoREIL already exists

• Usable from Java, ECMAScript, Python, Ruby

29

Overview

30

The REIL Language

Abstract Interpretation

MonoREIL

Results

Register Tracking

• First Example: Simple

• Question: What are the effects of a register on
other instructions?

• Useful for following register values

31

Register Tracking

• Demo

32

Register Tracking

• Lattice: For each instruction, set of influenced
registers, combine with union

• Initial State

– Empty (nearly) everywhere

– Start instruction: { tracked register }

• Transformations for MNEM op1, op2, op3

– If op1 or op2 are tracked op3 is tracked too

– Otherwise: op3 is removed from set

33

Negative indexing

• Second Example: More complicated

• Question: Is this function indexing into an array
with a negative value ?

• This gets a bit more involved

34

Negative indexing

• Simple intervals alone do not help us much

• How would you model a situation where

– A function gets a structure pointer as argument

– The function retrieves a pointer to an array from an
array of pointers in the structure

– The function then indexes negatively into this array

• Uh. Ok.

35

Abstract locations

• For each instruction, what are the contents of the
registers ? Let‘s slowly build complexity:

• If eax contains arg_4, how could this be modelled ?

– eax = *(esp.in + 8)

• If eax contains arg_4 + 4 ?

– eax = *(esp.in + 8) + 4

• If eax can contain arg_4+4, arg_4+8, arg_4+16,
arg_4 + 20 ?

– eax = *(esp.in + 8) + [4, 20]

36

Abstract locations

• If eax can contain arg_4+4, arg_8+16 ?

– eax = *(esp.in + [8,12]) + [4,16]

• If eax can contain any element from

– arg_4mem[0] to arg_4mem[10], incremented
once, how do we model this ?

– eax = *(*(esp.in + [8,8]) + [4, 44]) + [1,1]

• OK. An abstract location is a base value and a
list of intervals, each denoting memory
dereferences (except the last)

37

Range Tracking

38

eax.in + [a, b] + [0, 0]

eax.in + a eax.in + b

Range Tracking

39

eax + [a, b] + [c, d] + [0, 0]

[eax+a]+c [eax+a]+d [eax+a+4]+c [eax+a+4]+d [eax+b]+c [eax+b]+d

eax + a eax + b

Range Tracking

• Lattice: For each instruction, a map:

• Initial State

– Empty (nearly) everywhere

– Start instruction: { reg -> reg.in + [0,0] }

• Transformations

– Complicated. Next slide.

40

 AlocAlocRegister

Range Tracking

• Transformations

– ADD/SUB are simple: Operate on last intervals

– STM op1, , op3

• If op1 or op3 not in our input map M skip

• Otherwise, M[M[op3]] = op1

– LDM op1, , op3

• If op1 or op3 is not in our input map M skip

• M[op3] = M[op1]

– Others: Case-specific hacks

41

Range Tracking

• Where is the meat ?

• Real world example: Find negative array
indexing

42

MS08-67

• Function takes in argument to a buffer

• Function performs complex pointer arithmetic

• Attacker can make this pointer arithmetic go
bad

• The pointer to the target buffer of a wcscpy will
be decremented beyond the beginning of the
buffer

43

MS08-67

• Michael Howard‘s Blog:
– “In my opinion, hand reviewing this code and

successfully finding this bug would require a great deal
of skill and luck. So what about tools? It's very difficult
to design an algorithm which can analyze C or C++ code
for these sorts of errors. The possible variable states
grows very, very quickly. It's even more difficult to take
such algorithms and scale them to non-trivial code
bases. This is made more complex as the function
accepts a highly variable argument, it's not like the
argument is the value 1, 2 or 3! Our present toolset
does not catch this bug.”

44

MS08-67

• Michael is correct

– He has to defend all of Windows

– His „regular“ developers have to live with the
results of the automated tools

– His computational costs for an analysis are gigantic

– His developers have low tolerance for false positives

45

MS08-67

• Attackers might have it easier

– They usually have a much smaller target

– They are highly motivated: I will tolerate 100 false
positives for each „real“ bug

• I can work through 20-50 a day

• A week for a bug is still worth it

– False positive reduction is nice, but if I have to read
100 functions instead of 20000, I have already
gained something

46

MS08-67

• Demo

47

Limitations and assumptions

• Limitations and assumptions

– The presented analysis does not deal with aliasing

– We make no claims about soundness

– We do not use conditional control-flow information

– We are still wrestling with calling convention issues

– The important bit is not our analysis itself – the
important part is MonoREIL

– Analysis algorithms will improve over time – laying
the foundations was the boring part

48

Status

• Abstract interpretation framework available in
BinNavi

• Currently x86

• In April (two weeks !): PPC and ARM

– Was only a matter of adding REIL translators

• Some example analyses:

– Register tracking (lame, but useful !)

– Negative array indexing (less lame, also useful !)

49

Outlook

• Deobfuscation through optimizing REIL

• More precise and better static analysis

• Register tracking etc. release in April (two
weeks !)

• Negative array indexing etc. release in October

• Attempting to encourage others to build their
own lattices

50

Related work ?

• Julien Vanegue / ERESI team (EKOPARTY)

• Tyler Durden‘s Phrack 64 article

• Principles of Program Analysis
(Nielson/Nielson/Hankin)

• University of Wisconsin WISA project

• Possibly related: GrammaTech CodeSurfer x86

51

Questions ?

52

(Good Bye, Canada)

