Platform-independent static binary code analysis using a metaassembly language Thomas Dullien, Sebastian Porst zynamics GmbH

CanSecWest 2009

The REIL Language

Abstract Interpretation

MonoREIL

Motivation

Bugs are getting harder to find

- Defensive side (most notably Microsoft) has invested a lot of money in a "bugocide"
- Concerted effort: Lots of manual code auditing aided by static analysis tools
- Phoenix RDK: Includes "lattice based" analysis framework to allow pluggable abstract interpretation in the compiler

Motivation

- Offense needs automated tools if they want to avoid being sidelined
- Offensive static analysis: Depth vs. Breadth
- Offense has no source code, no Phoenix RDK, and should not depend on Microsoft
- We want a static analysis framework for offensive purposes

The REIL Language

Abstract Interpretation

MonoREIL

REIL

Reverse Engineering Intermediate Language

CAN SEC WEST

- Platform-Independent meta-assembly language
- Specifically made for static code analysis of binary files
- Can be recovered from arbitrary native assembly code
 - Supported so far: x86, PowerPC, ARM

- Very small instruction set (17 instructions)
- Instructions are very simple
- Operands are very simple
- Free of side-effects
- Analysis algorithms can be written in a platform-independent way
 - Great for security researchers working on more than one platform

- Input: Disassembled Function

 x86, ARM, PowerPC, potentially others
- Each native assembly instruction is translated to one or more REIL instructions
- Output: The original function in REIL code

597DA51B	netapi32.xp	sp3.dll::sub_597DA51B
597DA53E	cmp	word ax, word si
597DA541	jz	cs:loc_597DD83D

-
597DA53E00: and eax, 65535, t1
597DA53E01: and esi, 65535, t3
597DA53E02: and t1, 32768, t4
597DA53E03: and t3, 32768, t5
597DA53E04: sub t1, t3, t6
597DA53E05: and t6, 32768, t7
597DA53E06: bsh t7, -15, SF
597DA53E07: xor t4, t5, t8
597DA53E08: xor t4, t7, t9
597DA53E09: and t8, t9, t10
597DA53E0A: bsh t10, -15, OF
597DA53E0B: and t6, 65536, t11
597DA53E0C: bsh t11, -16, CF
597DA53E0D: and t6, 65535, t12
597DA53E0E: bisz t12, , ZF
597DA54100: jcc ZF, , 1501419581

Design Criteria

- Simplicity
- Small number of instructions
 - Simplifies abstract interpretation (more later)
- Explicit flag modeling
 - Simplifies reasoning about control-flow
- Explicit load and store instructions
- No side-effects

REIL Instructions

- One Address
 - Source Address * 0x100 + n
 - Easy to map REIL instructions back to input code
- One Mnemonic
- Three Operands
 - Always
- An arbitrary amount of meta-data
 - Nearly unused at this point

REIL Operands

- All operands are typed
 - Can be either registers, literals, or sub-addresses
 - No complex expressions
- All operands have a size
 - 1 byte, 2 bytes, 4 bytes, …

The REIL Instruction Set

- Arithmetic Instructions
 ADD, SUB, MUL, DIV, MOD, BSH
- Bitwise Instructions
 AND, OR, XOR
- Data Transfer Instructions
 - LDM, STM, STR

The REIL Instruction Set

- Conditional Instructions

 BISZ, JCC
- Other Instructions
 NOP, UNDEF, UNKN
- Instruction set is easily extensible

REIL Architecture

- Register Machine
 - Unlimited number of registers t₀, t₁, ...
 - No explicit stack
- Simulated Memory
 - Infinite storage
 - Automatically assumes endianness of the source platform

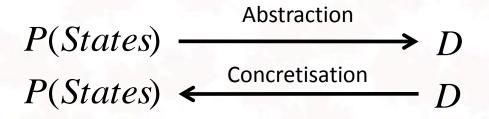
- Does not support certain instructions (FPU, MMX, Ring-0, ...) yet
- Can not handle exceptions in a platformindependent way
- Can not handle self-modifying code
- Does not correctly deal with memory selectors

The REIL Language

Abstract Interpretation

MonoREIL

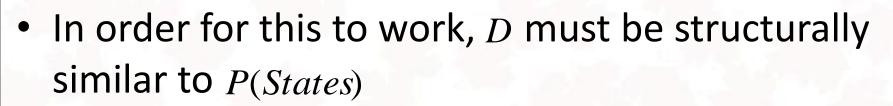
- Theoretical background for most code analysis
- Developed by Patrick and Rhadia Cousot around 1975-1977
- Formalizes "static abstract reasoning about dynamic properties"
- Huh ?
- A lot of the literature is a bit dense for many security practitioners



- We want to make statements about programs
- Example: Possible set of values for variable x at a given program point p
- In essence: For each point p, we want to find
 K_p ∈ P(States)
- Problem: *P*(*States*) is a bit unwieldly
- Problem: Many questions are undecidable (where is the w*nker that yells "halting problem") ?

Dealing with unwieldy stuff

Reason about something simpler:


CAN SEC WEST

• Example: Values vs. Intervals

Lattices

- *P*(*States*) supports intersection and union
- You can check for inclusion (contains, does not contain)
- You have an empty set (bottom) and "everything" (top)

Lattices

- A lattice is something like a generalized powerset
- Example lattices: Intervals, Signs, P(Registers), mod p

Dealing with halting

- Original program consists of p₁ ... p_n program points
- Each instruction transforms a set of states into a different set of states
- $p_1 \dots p_n$ are mappings $P(States) \rightarrow P(States)$
- Specify $p'_1 \dots p'_n : D \to D$
- This yields us $\widetilde{p}: D^n \to D^n$

- We cheat: Let *D* be finite $\rightarrow D^n$ is finite
- Make sure that \tilde{p} is monotonous (like this talk)
- Begin with initial state I
- Calculate $\tilde{p}(l)$
- Calculate $\tilde{p}(\tilde{p}(l))$
- Eventually, you reach $\tilde{p}^{n}(l) = \tilde{p}^{n-1}(l)$
- You are done read off the results and see if your question is answered

Theory vs. practice

 A lot of the academic focus is on proving correctness of the transforms

- As practitioner we know that p_i is probably not fully correctly specified
- We care much more about choosing and constructing a *D* so that we get the results we need

The REIL Language

Abstract Interpretation

MonoREIL

MonoREIL

- You want to do static analysis
- You do not want to write a full abstract interpretation framework
- We provide one: MonoREIL
- A simple-to-use abstract interpretation framework based on REIL

What does it do?

- You give it
 - The control flow graph of a function (2 LOC)
 - A way to walk through the CFG (1 + n LOC)
 - The lattice D (15 + n LOC)
 - Lattice Elements
 - A way to combine lattice elements
 - The initial state (12 + n LOC)
 - Effects of REIL instructions on D (50 + n LOC)

- Fixed-point iteration until final state is found
- Interpretation of result
 - Map results back to original assembly code
- Implementation of MonoREIL already exists
- Usable from Java, ECMAScript, Python, Ruby

The REIL Language

Abstract Interpretation

MonoREIL

- First Example: Simple
- Question: What are the effects of a register on other instructions?
- Useful for following register values

Register Tracking

Register Tracking

- Lattice: For each instruction, set of influenced registers, combine with union
- Initial State
 - Empty (nearly) everywhere
 - Start instruction: { tracked register }
- Transformations for MNEM op1, op2, op3
 - If op1 or op2 are tracked → op3 is tracked too
 - Otherwise: op3 is removed from set

- Question: Is this function indexing into an array with a negative value ?
- This gets a bit more involved

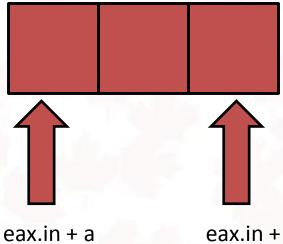
- Simple intervals alone do not help us much
- How would you model a situation where
 - A function gets a structure pointer as argument
 - The function retrieves a pointer to an array from an array of pointers in the structure
 - The function then indexes negatively into this array
- Uh. Ok.

Abstract locations

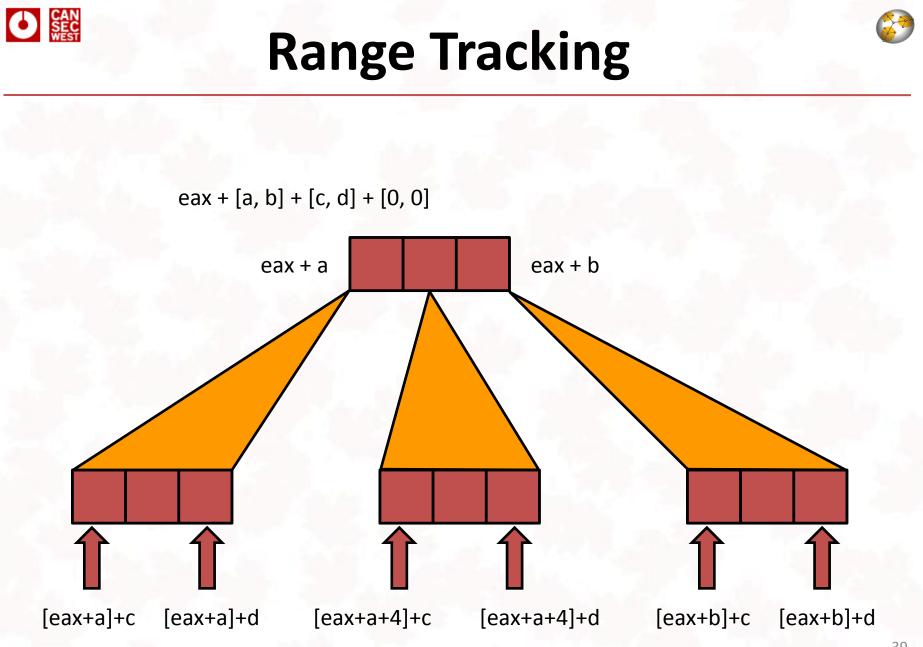
- For each instruction, what are the contents of the registers ? Let's slowly build complexity:
- If eax contains arg_4, how could this be modelled ?
 eax = *(esp.in + 8)
- If eax contains arg_4 + 4 ?
 - eax = *(esp.in + 8) + 4
- If eax can contain arg_4+4, arg_4+8, arg_4+16, arg_4 + 20 ?
 - eax = *(esp.in + 8) + [4, 20]

Abstract locations

- If eax can contain arg_4+4, arg_8+16?
 eax = *(esp.in + [8,12]) + [4,16]
- If eax can contain any element from
 - arg_4→mem[0] to arg_4→mem[10], incremented once, how do we model this ?


- eax = *(*(esp.in + [8,8]) + [4, 44]) + [1,1]

 OK. An abstract location is a base value and a list of intervals, each denoting memory dereferences (except the last)



eax.in + [a, b] + [0, 0]

eax.in + b

Range Tracking

- Lattice: For each instruction, a map: $Register \bigcup Aloc \rightarrow Aloc$
- Initial State
 - Empty (nearly) everywhere
 - Start instruction: { reg -> reg.in + [0,0] }
- Transformations
 - Complicated. Next slide.

Range Tracking

- Transformations
 - ADD/SUB are simple: Operate on last intervals
 - STM op₁, , op₃
 - If op₁ or op₃ not in our input map M skip
 - Otherwise, M[M[op₃]] = op₁
 - $-LDM op_1, , op_3$
 - If op₁ or op₃ is not in our input map M skip
 - M[op₃] = M[op₁]
 - Others: Case-specific hacks

- Where is the meat ?
- Real world example: Find negative array indexing

MS08-67

Function takes in argument to a buffer

CAN SEC WEST

- Function performs complex pointer arithmetic
- Attacker can make this pointer arithmetic go bad
- The pointer to the target buffer of a wcscpy will be decremented beyond the beginning of the buffer

MS08-67

- Michael Howard's Blog:
 - "In my opinion, hand reviewing this code and successfully finding this bug would require a great deal of skill and luck. So what about tools? It's very difficult to design an algorithm which can analyze C or C++ code for these sorts of errors. The possible variable states grows very, very quickly. It's even more difficult to take such algorithms and scale them to non-trivial code bases. This is made more complex as the function accepts a highly variable argument, it's not like the argument is the value 1, 2 or 3! Our present toolset does not catch this bug."

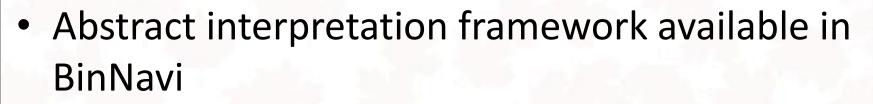
MS08-67

- Michael is correct
 - He has to defend all of Windows
 - His "regular" developers have to live with the results of the automated tools
 - His computational costs for an analysis are gigantic
 - His developers have low tolerance for false positives

MS08-67

Attackers might have it easier

- They usually have a much smaller target
- They are highly motivated: I will tolerate 100 false positives for each "real" bug
 - I can work through 20-50 a day
 - A week for a bug is still worth it
- False positive reduction is nice, but if I have to read 100 functions instead of 20000, I have already gained something


and the second s		
CAN SEC WEST	MS08-67	E
• Demo		
		47

Limitations and assumptions

- Limitations and assumptions
 - The presented analysis does not deal with aliasing
 - We make no claims about soundness
 - We do not use conditional control-flow information
 - We are still wrestling with calling convention issues
 - The important bit is not our analysis itself the important part is MonoREIL
 - Analysis algorithms will improve over time laying the foundations was the boring part

Status

- Currently x86
- In April (two weeks !): PPC and ARM
 Was only a matter of adding REIL translators
- Some example analyses:
 - Register tracking (lame, but useful !)
 - Negative array indexing (less lame, also useful !)

Outlook

Deobfuscation through optimizing REIL

CAN SEC WEST

- More precise and better static analysis
- Register tracking etc. release in April (two weeks !)
- Negative array indexing etc. release in October
- Attempting to encourage others to build their own lattices

Related work ?

- Julien Vanegue / ERESI team (EKOPARTY)
- Tyler Durden's Phrack 64 article
- Principles of Program Analysis (Nielson/Nielson/Hankin)
- University of Wisconsin WISA project
- Possibly related: GrammaTech CodeSurfer x86

Questions ?

(Good Bye, Canada)